Counting spanning trees with linear algebra

Denis Liabakh, Maksym Skulysh, Maryna Lubimova

June 2024

Definition 1 (Graph)

A simple undirected graph G is a pair (V, E) , where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 1 (Graph),

A simple undirected graph G is a pair (V, E) , where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 2 (Path)

A path is a non-empty subgraph $P = (V_P, E_P)$ of the graph G of the form

$$
V_P = \{x_0, x_1, \ldots, x_k\} \quad E_P = \{x_0x_1, x_1x_2, \ldots, x_{k-1}x_k\},
$$

where the x_i are all distinct.

何 ▶ (三) (三)

Definition 1 (Graph),

A simple undirected graph G is a pair (V, E) , where V is a set and E is a symmetric subset of $V \times V \setminus \{(x, x), x \in V\}$. The elements of V are called the vertices of G and the elements of E are called the edges of G.

Definition 2 (Path)

A path is a non-empty subgraph $P = (V_P, E_P)$ of the graph G of the form

$$
V_P = \{x_0, x_1, \ldots, x_k\} \quad E_P = \{x_0x_1, x_1x_2, \ldots, x_{k-1}x_k\},
$$

where the x_i are all distinct.

Definition 3 (Connected graph)

A non-empty graph G is called connected if any two of its vertices are linked by a path in G.

Definition 4 (Tree)

A simple connected graph T is called tree if it is minimally connected, i.e. T is connected but $T - e$ is disconnected for every edge $e \in \mathcal{T}$.

 \rightarrow \equiv \rightarrow

Definition 4 (Tree)

A simple connected graph T is called tree if it is minimally connected, i.e. T is connected but $T - e$ is disconnected for every edge $e \in \mathcal{T}$.

Definition 5 (Spanning tree)

If G is a connected graph, we say that T is a spanning tree of G if G and T have the same vertex set, and each edge of T is also an edge of G.

Examples of graphs

The graph on $V = \{1, \dots, 7\}$ with edge set $E = \{\{1, 2\}, \{2, 5\}, \{3, 4\}, \{4, 5\}, \{5, 7\}\}\$

Graph Visualization

Tree graph

 \leftarrow

E

∍

Ξ

Problem statement

You are given a finite simple connected graph G. How to calculate number of spanning trees of G?

Theorem 6 (Matrix-Tree theorem)

Let U be a simple undirected graph. Let $\{v_1, v_2, \ldots, v_n\}$ be the vertices of U. Define $(n - 1) \times (n - 1)$ matrix L_0 by

$$
\ell_{ij} = \begin{cases} \text{the degree of } v_i \text{ if } i = j, \\ -1 \text{ if } i \neq j, \text{ and } v_i \text{ and } v_j \text{ are adjacent, and} \\ 0 \text{ otherwise} \end{cases}
$$

where $1 \le i, j \le n-1$. Then U has exactly det L_0 spanning trees.

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶

Definition 7 (Matrix)

The matrix size $m \times n$ with real or complex entries is a rectangular array or table filled with real or complex numbers.

 \triangleright and \exists in an analysis

Linear algebra basics

Definition 7 (Matrix)

The matrix size $m \times n$ with real or complex entries is a rectangular array or table filled with real or complex numbers.

$$
I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}
$$

Definition 7 (Matrix)

The matrix size $m \times n$ with real or complex entries is a rectangular array or table filled with real or complex numbers.

Operations with matrices

- **•** Addition
- Scalar multiplication
- **•** Multiplication
- **•** Transposing
- Inverting

医阿里氏阿里氏

Definition 8 (Determinant of matrix)

Determinant of a square matrix is an antisymmetric multilinear function of the columns (or of the rows) of a matrix such that $\det I = 1$.

Properties

- \bullet det $I = 1$
- Exchanging two rows (or two columns) reverses the sign of the determinant.
- The determinant is linear in each row (in each column) separately.
- For matrices of equal size X and Y: det $XY = \det X$ det Y
- For matrix X of size $a \times a$ and constant $c \in \mathbb{C}$: $det(cX) = c^a det X$

Computing determinant: formula with permutations

Formula with permutations

$$
\det A = \sum_{\pi \in Sym(n)} sign(\pi) a_{1\pi(1)} a_{2\pi(2)} \dots a_{n\pi(n)},
$$

where π ranges over the collection of all permutations of the set ${1, 2, \ldots, n} = [n].$

Row operations

Switching rows

$$
\begin{bmatrix} a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{m(n-1)} & a_{mn} \end{bmatrix} \hookrightarrow \begin{bmatrix} a_{m1} & \cdots & a_{m(n-1)} & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{11} & \cdots & a_{1(n-1)} & a_{1n} \end{bmatrix}
$$

Multiplying row by a non-zero constant

$$
\begin{bmatrix} a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix} \hookrightarrow \begin{bmatrix} Ma_{11} & \cdots & Ma_{1(n-1)} & Ma_{1n} \\ \cdots & \cdots & \cdots & \cdots \end{bmatrix}
$$

Adding rows

$$
\begin{bmatrix} a_{11} & \cdots & a_{1(n-1)} & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{m(n-1)} & a_{mn} \end{bmatrix} \hookrightarrow \begin{bmatrix} a_{11} + a_{m1} & \cdots & a_{1n} + a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}
$$

Denis Liabakh, Maksym Skulysh, Maryna Lubimova [Counting spanning trees with linear algebra](#page-0-0) 12

Computing determinant: Cofactor formula

Cofactor formula

$$
\det A = \sum_{j=1}^n a_{ij} C_{ij}
$$

where $i \in [n]$ and C_{ij} equals $(-1)^{i+j}$ times determinant of $(n-1) \times (n-1)$ square matrix obtained by removing row *i* and column j. C_{ii} is called a *cofactor* of a_{ii} .

Prove that the number of spanning trees of K_n is n^{n-2} (Cayley's formula).

 \triangleright and \exists in an analysis

 \sim \sim

Prove that the number of spanning trees of K_n is n^{n-2} (Cayley's formula).

Proof.

$$
L_0 = \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & & & & \\ -1 & -1 & \cdots & n-1 \end{bmatrix}
$$

 \sim \sim

何 ▶ (三) (三)

∍

Proof.

$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & & & & \\ -1 & -1 & \cdots & n-1 \end{bmatrix}
$$

Proof.

$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & & & \\ -1 & -1 & \cdots & n-1 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & n & \cdots & 0 \\ \cdots & & & \\ 0 & 0 & \cdots & n \end{bmatrix}
$$

Proof.

$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ -1 & n-1 & \cdots & -1 \\ \cdots & & & & \\ -1 & -1 & \cdots & n-1 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & n & \cdots & 0 \\ \cdots & & & \\ 0 & 0 & \cdots & n \end{bmatrix}
$$
det $L_0 = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ 0 & n & \cdots & 0 \\ \cdots & & & \\ 0 & 0 & \cdots & n \end{vmatrix} = n^{n-2}$

Directed G graph is defined as follows: $G=(V,E,s,t)$ where V and E are sets and s and t are the functions from E to V . For an edge e we think of $s(e)$ as the starting vertex of e and $t(e)$ is the ending vertex of e.

Directed G graph is defined as follows: $G=(V,E,s,t)$ where V and E are sets and s and t are the functions from E to V . For an edge e we think of $s(e)$ as the starting vertex of e and $t(e)$ is the ending vertex of e.

Let G be a directed graph without loops. Let $\{v_1, v_2, \ldots, v_n\}$ be a verties of G, and let $\{e_1, e_2, \ldots, e_m\}$ denote the edges of G. Then the *incidence matrix* of G is $n \times m$ matrix A defined by

- $a_{ij}=1$ if v_i is the starting vertex of e_j
- $a_{ij} = -1$ if v_i is the ending vertex of e_j
- $a_{ii} = 0$ otherwise.

Let G be a directed graph without loops. Let $\{v_1, v_2, \ldots, v_n\}$ be a verties of G, and let $\{e_1, e_2, \ldots, e_m\}$ denote the edges of G. Then the *incidence matrix* of G is $n \times m$ matrix A defined by

- $a_{ij}=1$ if v_i is the starting vertex of e_j
- $a_{ij} = -1$ if v_i is the ending vertex of e_j
- $a_{ii} = 0$ otherwise.

Theorem 11

Let G be a directed graph without loop, and let A be the incidence matrix of G. Remove any row of A and let A_0 be the remaining matrix. The number of spanning trees of G is $\det A_0 A_0{}^T$.

∢ 何 ▶ (ヨ ▶ (ヨ ▶